

PYTHON PROGRAMMING

UNIT – I FUNDAMENTALS OF PYTHON

Introduction to Python – Advantages of Python programming – Variables and Datatypes – Comments

– I/O function –Operators – Selection control structures – Looping control structures –Functions:

Declaration – Types of arguments – Anonymous functions: Lambda.

Introduction

Fundamentals of Python

Python is a general-purpose, interpreted, interactive, object-oriented, open source, robust

and high-level programming language. Python is easy to learn yet powerful and versatile scripting

language. It was created by Guido van Rossum during 1985- 1990.It is ideal for scripting and rapid

application development.Its design makes it very readable. Python makes the development and

debugging fast because there is no compilation step included in python development and edit-test-

debug cycle is very fast.Python is useful for accomplishingreal-world tasks—the sorts of things

developers do day in and day out.It’s commonly used in a variety of domains, as a tool for scripting

other componentsand implementing standalone programs.It is widely used in web development,

scientific and mathematical computing. Python is most widely used in following domains

• Game programming and multimedia

• Image processing

• Natural language analysis

• Artificial intelligence

• Document processing and generation

• Data visualization

• Data mining

Also, it uses English keywords frequently where as other languages use punctuation, and it has

fewer syntactical constructions than other languages.The syntax (words and structure) is extremely

simple to read and follow.

Origins

Work on python began in the late 1980s. The implementation of Python was started in the

December 1989 by Guido Van Rossum at CWI in Netherland. It was released for public

distribution in early 1991. Like all other programming languages like C, C++, Lisp and

Java, Python was developed from research background. Python is a successor of interpreted

language ABC, capable of exception handling and interfacing with the Amoeba operating

system.

• Python version 1.0 was released in January 1994. The major new features included

in this release were the functional programming tools lambda, map, filter and

reduce.

• In October 2000, Python 2.0 was introduced. This release included list

comprehensions, a full garbage collector and it was supporting unicode.

https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Amoeba_(operating_system)

• Python 3.0 was released on 3 December 2008. It was designed to rectify

fundamental flaw of the language.

Features
Python provide lot of features for the programmers.

Object-Oriented and Functional

Python is an object-oriented language, from the ground up. It follow object and class concept. Its

class model supportsadvanced notions such as polymorphism, operator overloading, and multiple

inheritance; Like C++, Python supports procedure-oriented programming as well as object-

oriented programming.In addition to its original procedural (statement-based) and object-oriented

(classbased)paradigms, python borrows functional programming concepts —a set that by most

measures includes generators, comprehensions, closures,maps, decorators, anonymous function

lambdas, and first-class function objects.

Free and Open Source

Python is completely free to use and distribute. As with other open source software,such as Tcl,

Perl, Linux, and Apache, you can fetch the entire Python system’s sourcecode for free on the

Internet. There are no restrictions on copying it, embedding it inyour systems, or shipping it with

your products. This is called FLOSS(Free/Libre and Open Source Software).

Portable

The standard implementation of Python is written in portable ANSI C, and it compilesand runs on

virtually every major platform currently in use. For example, Python programsrun today on

everything from PDAs to supercomputers. Python can run equally on different platforms such as

Windows, Linux, Unix and Macintosh etc.

Relatively Easy to Use and Learn

 Compared to alternative languages, python programming is extremely simple to learn. It

offers an easy to understand syntax, simple setup, and has many practical applications in web

development. To run a Python program, you simply type it and

run it. There are no intermediate compile and link steps, like there are for languagessuch as C or

C++. Python executes programs immediately, which makes for an interactive

programming experience and rapid turnaround after program changes

Interpreted

Python is an interpreted language i.e. interpreter executes the code line by line at a time. When

you use an interpreted language like Python, there is no separate compilation and execution steps.

You just run the program from the source code. This makesdebugging easy and thus suitable for

beginners. Internally, Python converts the source code into an intermediate form

called bytecodes and then translates this into the native language of your specific computer and

then runs it. You just run your programs and you never have to worry about linking and loading

with libraries, etc.

Extensible

If needed, Python code can be written in other languages like C++. This makes Python an

extensible language, meaning that it can be extended to other languages. Python extensions can be

written in C and C++ for the standard implementation of python in C. The Java language

implementation of python is called Jython. Finally, there is Ironpython, the C# implementation for

the .NET.

Powerful

From a features perspective, Python is something of a hybrid. Its toolset places it

betweentraditional scripting languages (such as Tcl, Scheme, and Perl) and systems

developmentlanguages (such as C, C++, and Java).Python is useful for large-scale development

projects. The following features make Python language more powerful.

• Dynamic typing

• Automatic memory management

• Programming-in-the-large support

• Built-in object types

• Built-in tools

• Library utilities

Advantages of Python Programming

• It supports functional and structured programming methods as well as OOP.

• It can be used as a scripting language or can be compiled to byte-code for building large

applications.

• It provides very high-level dynamic data types and supports dynamic type checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java

Variables

Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory.Based on the data type of a variable,

the interpreter allocates memory and decides what can be stored in the reserved memory.

Therefore, by assigning different data types to variables, you can store integers, decimals or

characters in these variables.

Python variables do not need explicit declaration to reserve memory space. The declaration

happens automatically when you assign a value to a variable. The equal sign (=) is used to

assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the

right of the = operator is the value stored in the variable.

Example

 counter = 0

 miles = 100.0

name = ‘abc’

 counter = counter + 1

Assignment does not copy a value; it just attaches a name to the object that contains the data.

The name is a reference to a thing rather than the thing itself.

The following are the examples of assignment

>>> a = 7

>>>print(a)

7

>>> b = a

>>>print(b)

7

The above code performs the following steps

1. Assign the value 7 to the name a. This creates an object box containing the integer value 7.

2. Print the value of a.

3. Assign a to b, making b also stick to the object box containing 7.

4. Print the value of b

Keywords

Keywords are the reserved words in Python which convey a special meaning to the interpreter.

Each keyword have a special meaning and a specific operation. These keywords cannot be

used as variable name, function name or any other identifier.

Here's a list of all keywords in Python Programming

True False None and as

asset def class continue break

else finally elif del except

global for if from import

raise try or return pass

nonlocal in not is lambda

The above keywords may get altered in different versions of Python. Some extra might get

added or some might be removed. List of keywords in current version is obtained by typing

the following in the prompt.

>>> import keyword

>>>print(keyword.kwlist)

Data Types

Variables can hold values of different data types. Python is a dynamically typed language hence

we need not define the type of the variable while declaring it. The interpreter implicitly binds the

value with its type.

Python enables us to check the type of the variable used in the program. Python provides us

the type() function which returns the type of the variable passed.

Consider the following example to define the values of different data types and checking its type.

>>>a=25

>>>b="Welcome"

>>>c = 40.3

>>>type(a)

 <class 'int'>

>>>type(b)

 <class 'str'>

>>>type(c);

 <class 'float'>

Python provides various standard data types that define the storage method on each of them. The

data types defined in Python are given below.

1. Boolean

2. Numbers

3. Strings

4. Lists

5. Tuples

6. Dictionaries

7. Sets

Boolean

Booleans are either true or false. Python has two constants, cleverly named True and False, which

can be used to assign boolean values directly. Expressions can also evaluate to a boolean value. In

certain places, Python expects an expression to evaluate to a boolean value. These places are called

boolean contexts.

>>>x=True

>>>type(x)

<class 'bool'>

>>>size = 1

>>>size< 0

False

>>>size = 0

>>>size< 0

False

>>>size = -1

>>>size< 0

True

Booleans can be treated as numbers. True is 1; False is 0.

>>> True + True

 2

>>> True - False

1

>>> True * False

0

>>> True / False

Traceback (most recent call last):

 File "<stdin>", line 1, in<module>

ZeroDivisionError: division by zero

Numbers
Number stores numeric values. Python creates Number objects when a number is assigned to a

variable. Python has three distinct numeric types

• Integers

Integers represent negative and positive integers without fractional parts (Integers like 10, 2,

29,-45,-3 etc.).

• Floating point numbers

Floating point numbers represents negative and positive numbers with fractional parts(float

is used to store floating point numbers like 1.9, 9.902, -56.3 etc.).

• Complex numbers

Mathematically, a complex number (generally used in engineering) is a number of the form

A+Bi where i is the imaginary number. Complex numbers have a real and imaginary part.

Python supports complex numbers either by specifying the number in (real + imagJ) or

(real + imagj) form or using a built-in method complex(x, y).

>>>a=123

>>>type(a)

<class 'int'>

>>>b=23.12

>>>type(b)

<class 'float'>

>>>c=-56

>>>type(c)

<class 'int'>

>>>x=complex(1,2)

>>>type(x)

<class 'complex'>

Input and Output Statement

Input Statement
 The input() function allows user input. The syntax for input() is

 input(prompt)

where prompt is the string we wish to display on the screen. It is optional.

>>>num=input('Enter a number: ')

Enter a number:10

>>>num

'10'

Here, we can see that the entered value 10 is a string, not a number. To convert this into a

number we can use int() or float() functions.

Taking multiple inputs from user in Python

Developer often wants a user to enter multiple values or inputs in one line. Python user can take

multiple values or inputs in one line by two methods.

• Using split() method

• Using List comprehension

Using split() method :

This function helps in getting a multiple inputs from user . It breaks the given input by the

specified separator. If separator is not provided then any white space is a separator. Generally,

user use a split() method to split a Python string but one can used it in taking multiple input.

Syntax :
input().split(separator, maxsplit)

x, y =input("Enter a two value: ").split()
print("Number of boys: ", x)
print("Number of girls: ", y)
print()

taking three inputs at a time
x, y, z =input("Enter a three value: ").split()
print("Total number of students: ", x)
print("Number of boys is : ", y)
print("Number of girls is : ", z)
print()

taking two inputs at a time
a, b =input("Enter a two value: ").split()
print("First number is {} and second number is {}".format(a, b))
print()

taking multiple inputs at a time
and type casting using list() function
x =list(map(int, input("Enter a multiple value: ").split()))
print("List of students: ", x)

Using List comprehension

List comprehension is an elegant way to define and create list in Python. We can create lists just like mathematical

statements in one line only. It is also used in getting multiple inputs from a user.

x, y =[int(x) forxininput("Enter two value: ").split()]
print("First Number is: ", x)

https://www.geeksforgeeks.org/python-string-split/
https://www.geeksforgeeks.org/python-list-comprehension-and-slicing/

print("Second Number is: ", y)
print()

taking three input at a time
x, y, z =[int(x) forxininput("Enter three value: ").split()]
print("First Number is: ", x)
print("Second Number is: ", y)
print("Third Number is: ", z)
print()

taking two inputs at a time
x, y =[int(x) forxininput("Enter two value: ").split()]
print("First number is {} and second number is {}".format(x, y))
print()

x =[int(x) forxininput("Enter multiple value: ").split()]
print("Number of list is: ", x)

Reading multiple integer values

Method1

x,y,z = map(int,input("Enter three values: ").split(","))

sum=x+y+z

print(sum)

Method2
x,y,z = [int(x) for x in input("Enter three values").split()]

sum=x+y+z

print(sum)

Output Statement

The print() function used to output data to the standard output device.

print('This sentence is output to the screen')

Output: This sentence is output to the screen

a = 5

print('The value of a is', a)

Output: The value of a is 5

Use of Separator in print

It's possible to redefine the separator between values by assigning an arbitrary string to the

keyword parameter "sep", i.e. an empty string or a smiley

>>>print("a","b")

a b

>>>print("a","b",sep="")

ab

>>>print(192,168,178,42,sep=".")

192.168.178.42

>>>print("a","b",sep=":-)")

a:-)b

Use of end in print

By default, python's print() function ends with a newline. This function comes with a parameter

called 'end.' The default value of this parameter is '\n,' i.e., the new line character. You can end a

print statement with any character or string using this parameter.

fori in range(4):

 print(i)

Output

0

1

2

3

fori in range(4):

print(i, end=" ")

Output

0 1 2 3

Comments in Python
Comments are lines that exist in computer programs that are ignored by compilers and interpreters.

Including comments in programs makes code more readable for humans as it provides some

information or explanation about what each part of a program is doing.

In Python, there are two ways to ways to include comments.The first is to include comments that

detail or indicate what a section of code – or snippet – does.The second makes use of multi-line

comments or paragraphs that serve as documentation for others reading your code.

Single-line comments

Single-line comments are created simply by beginning a line with the hash (#) character, and they

are automatically terminated by the end of line.

For example:

#Thisis the comment in Python

Comments that span multiple lines are used to explain things in more detail are created by adding

a delimiter (“””) on each end of the comment.

“”” This would be a multiline commentin Python that includes several lines and

describesthecode,or anything you want it to…

“””

Operators

 Operators are special symbols which can manipulate the value of operands. Operators can

manipulate individual items and returns a result.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Python language supports the following types of operators.

• Arithmetic Operators

• Relational Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction,

multiplication and division etc. Assume variable a holds 10 and variable b holds 20, then

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and

returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10 to the

power 20

// Floor Division The division of operands where the result is the

quotient in which the digits after the decimal point are

removed. But if one of the operands is negative, the

result is floored, i.e., rounded away from zero

(towards negative infinity) −

9//2 = 4 and

9.0//2.0 = 4.0, -

11//3 = -4,

-11.0//3 = -4.0

Relational Operators

Relational operators compare the values of two operands. It either returns True or False according

to the condition. Assume variable a holds 10 and variable b holds 20, then

Operator Description Example

== If the values of two operands are equal, then the condition

becomes true.

(a == b) =

False

!= If values of two operands are not equal, then condition becomes

true.

(a != b) =

True.

<> If values of two operands are not equal, then condition becomes

true.

(a <> b) =

True. This

is similar

to !=

operator.

> If the value of left operand is greater than the value of right

operand, then condition becomes true.

(a > b) =

False.

< If the value of left operand is less than the value of right operand,

then condition becomes true.

(a < b) =

Ttrue.

>= If the value of left operand is greater than or equal to the value of

right operand, then condition becomes true.

(a >=

b)=False.

<= If the value of left operand is less than or equal to the value of

right operand, then condition becomes true.

(a <= b) =

True.

Assignment Operators

Python assignment operators are used for assigning the value of the right operand to the left

operand. Various assignment operators used in Python are (+=, - = , *=, /= , etc.)

Logical Operators

Logical operators in Python are used for conditional statements are true or false. Logical operators

in Python are AND, OR and NOT. For logical operators following condition are applied.

• For AND operator – It returns TRUE if both the operands (right side and left side) are

true

• For OR operator- It returns TRUE if either of the operand (right side or left side) is true

• For NOT operator- returns TRUE if operand is false

Example

a = True

b = False

print(('a and b is',a and b))

print(('a or b is',a or b))

print(('not a is',not a))

Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation.

Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Operator Meaning Example

& Bitwise AND x& y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x>> 2 = 2 (0000 0010)

<< Bitwise left shift x<< 2 = 40 (0010 1000)

Membership operators

in and not in are the membership operators in Python. They are used to test whether a value or

variable is found in a sequence.

In a dictionary we can only test for presence of key, not the value.

Operator Meaning Example

in True if value/variable is found in the sequence 5 in x

not in True if value/variable is not found in the sequence 5 not in x

Identity operators

is and is not are the identity operators in Python. They are used to check if two values (or variables)

are located on the same part of the memory. Two variables that are equal does not imply that they

are identical.

Identity operators in Python

Operator Meaning Example

is True if the operands are identical (refer to the same object) x is True

is not True if the operands are not identical (do not refer to the same object) x is not True

Control Statements
Control Statement in Python performs different computations or actions depending on whether a

specific Boolean constraint evaluates to true or false. These statements allow the computer to select

or repeat an action. Control statement selects one option among all options and repeats specified

section of the program.

Selection control Structures
Decision making statements in programming languages decides the direction of flow of program

execution. Decision making statements available in python are:

• if statement

• if..else statements

• nested if statements

• if-elif ladder

if statement

if statement is the most simple decision making statement. It is used to decide whether a certain

statement or block of statements will be executed or not i.e if a certain condition is true then a

block of statement is executed otherwise not.

Syntax:
ifcondition:

 # Statements to execute if

 # condition is true

Python uses indentation to identify a block.

Python program to illustrate If statement

i = 20

https://www.geeksforgeeks.org/decision-making-python-else-nested-elif/#if
https://www.geeksforgeeks.org/decision-making-python-else-nested-elif/#if-else
https://www.geeksforgeeks.org/decision-making-python-else-nested-elif/#nif
https://www.geeksforgeeks.org/decision-making-python-else-nested-elif/#if-elif

if (i> 10):

 print ("10 is less than 20")

print ("I am Not in if")

if- else Statement

The if statement alone tells us that if a condition is true it will execute a block of statements and

if the condition is false it won’t. But what if we want to do something else if the condition is

false. Here comes the else statement. We can use the else statement with if statement to execute a

block of code when the condition is false.

Syntax:

if (condition):

 # Executes this block if

 # condition is true

else:

 # Executes this block if

 # condition is false

python program to illustrate If else statement
a =20

b = 30
if(a<b):
 print("a is smaller than b")
else:
 print("a is greater than b")
nested-if Statement

A nested if is an if statement that is the target of another if statement. Nested if statements means

an if statement inside another if statement. Yes, Python allows us to nest if statements within if

statements. i.e, we can place an if statement inside another if statement.

Syntax:

if (condition1):

 # Executes when condition1 is true

if (condition2):

 # Executes when condition2 is true

 # if Block is end here

if Block is end here

python program to illustrate nested If statement

i = 10

if (i == 10):

 # First if statement

 if (i< 15):

 print ("i is smaller than 15")

 # Nested - if statement

 # Will only be executed if statement above

 # it is true

 if (i< 12):

 print ("i is smaller than 12 too")

 else:

 print ("i is greater than 15")

if-elif-else ladder

Here, a user can decide among multiple options. The if statements are executed from the top

down. As soon as one of the conditions controlling the if is true, the statement associated with

that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then

the final else statement will be executed.

Syntax:-

if (condition):

statement

elif (condition):

statement

.

.

else:

statement

Python program to illustrate if-elif-else ladder

a,b,c=10,20,30

if (a >= b) and (a >= b):

largest = a

elif (b >= c):

largest = b

else:

largest = c

print("Largest among three numbers",largest)

Loops in python

Python programming language provides following types of loops to handle looping requirements.

Python provides three ways for executing the loops. While all the ways provide similar basic

functionality, they differ in their syntax and condition checking time.

1. While Loop:

In python, while loop is used to execute a block of statements repeatedly until a given a

condition is satisfied. And when the condition becomes false, the line immediately after the

loopin program is executed.

Syntax :

while expression:

statement(s)

All the statements indented by the same number of character spaces after a programming

construct are considered to be part of a single block of code. Python uses indentation as its

method of grouping statements.

Example:

Python program to illustratewhile loop
count =0
while(count < 3):
 count =count +1
 print("Welcome")

Using else statement with while loops:
While loop executes the block until a condition is satisfied. When the condition becomes false,
the statement immediately after the loop is executed. The else clause is only executed when
your while condition becomes false.

Syntax
whilecondition:
 # execute these statements
else:
 # execute these statements

#Python program to illustratecombining else with while
count =0
while(count < 3):
 count =count +1
 print("Welcome")
else:
 print("In Else Block")

for Loop Statements

It has the ability to iterate over the items of any sequence, such as a list or a string.

Syntax

foriterating_var in sequence:

statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the sequence

is assigned to the iterating variable iterating_var. Next, the statements block is executed. Each

item in the list is assigned to iterating_var, and the statement(s) block is executed until the entire

sequence is exhausted.

Example

for letter in 'Python': # First Example

print 'Current Letter :', letter

fruits = ['banana', 'apple', 'mango']

for fruit in fruits: # Second Example

print 'Current fruit :', fruit

Using else statement with for loops:

If the else statement is used with a for loop, the else statement is executed when the loop has

exhausted iterating the list.The following example illustrates the combination of an else statement

with a for statement that searches for prime numbers from 10 through 20.

Example

for num in range(10,20):

fori in range(2,num):

ifnum%i == 0:

 j=num/i

print('%d equals %d * %d' % (num,i,j))

break

else:

print num, 'is a prime number'

Loop Control Statements

Loop control statements change execution from its normal sequence.

break statement

It terminates the current loop and resumes execution at the next statement. The most common use

for break is when some external condition is triggered requiring a hasty exit from a loop. The

break statement can be used in both while and for loops.

If you are using nested loops, the break statement stops the execution of the innermost loop and

start executing the next line of code after the block.

Syntax

The syntax for a break statement in Python is as follows

 break

Example

var = 10

whilevar> 0:

print 'Current variable value :', var

var = var -1

ifvar == 5:

break

Output

Current variable value : 10

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Continue statement

It returns the control to the beginning of the while loop.. The continue statement rejects all the

remaining statements in the current iteration of the loop and moves the control back to the top of

the loop.

The continue statement can be used in both while and for loops.

Syntax

continue

Example

var = 10

whilevar> 0:

var = var -1

ifvar == 5:

continue

print(“'Current variable value :”, var)

Output

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Current variable value : 4

Current variable value : 3

Current variable value : 2

Current variable value : 1

Current variable value : 0

pass Statement

It is used when a statement is required syntactically but you do not want any command or code to

execute.

The pass statement is a null operation; nothing happens when it executes. The pass is also useful

in places where your code will eventually go, but has not been written yet (e.g., in stubs for

example

Syntax

pass

Example

for letter in 'Python':

if letter == 'h':

pass

print 'This is pass block'

print 'Current Letter :', letter

Output

Current Letter : P

Current Letter : y

Current Letter : t

This is pass block

Current Letter : h

Current Letter : o

Current Letter : n

Functions
A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity for your application and a high degree of code reusing.Python

provides many built-in functions like print(), etc. but the user can also create their own functions.

These functions are called user-defined functions.

Defining a Function

Functions can be defined to provide the required functionality. Here are simple rules to define a

function in Python.

• Function blocks begin with the keyword def followed by the function name and

parentheses ().

• Any input parameters or arguments should be placed within these parentheses. You can

also define parameters inside these parentheses.

• The code block within every function starts with a colon (:) and is indented.

• The statement return [expression] exits a function, optionally passing back an expression

to the caller. A return statement with no arguments is the same as return None.

Syntax of Function

deffunction_name(parameters):

 """docstring"""

 statement(s)

Example of a function

def greet(name):

 """This function greets to

 the person passed in as

 parameter"""

 print("Hello, " + name + ". Good morning!")

Types of arguments
In Python, user-defined functions can take four different types of arguments. The argument types

and their meanings, however, are pre-defined and can’t be changed. But a developer can,

instead, follow these pre-defined rules to make their own custom functions. The following are the

four types of arguments

• Default arguments

• Required arguments

• Keyword arguments

• Variable-length arguments

Default arguments

 A default argument is an argument that assumes a default value if a value is not provided

in the function call for that argument. The following example gives an idea on default arguments,

it prints default age if it is not passed. Below is a typical syntax for default argument.
In function call2 the default value of age is 35.

defemp(name, age = 35):

print("Name: ", name)

print("Age: ", age)

emp(age=50, name="arun") #Function call11

emp(name="Anand") #Function call2

Output

Name: arun

Age 50

Name: Anand

Age 35

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

defemp(name, age):

print("Name: ", name)

print("Age: ", age)

emp(age=50, name="arun") #Function call11

emp(name="Anand") #Function call2

To call the function emp(), you definitely need to pass two arguments, otherwise it gives a syntax

error as follows

Name: arun

Age 50

Traceback (most recent call last):

 File "main.py", line 7, in <module>

 emp(name="Anand")

TypeError: emp() missing 1 required positional argument: 'age'

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is

able to use the keywords provided to match the values with parameters.

defemp(name, age = 35):

print("Name: ", name)

print("Age: ", age)

emp(age=50, name="arun") #Function call11

emp(name="Anand" ,35) #Function call2

Output

emp(name="Anand" ,35) #Function call2

 ^

SyntaxError: non-keyword arg after keyword arg

In the function call2 the second argument age can not be identified with its name.

Variable number of arguments

This is very useful when we do not know the exact number of arguments that will be passed to a

function.You may need to process a function for more arguments than you specified while defining

the function. These arguments are called variable-length arguments and are not named in the

function definition, unlike required and default arguments. n asterisk (*) is placed before the

variable name that holds the values of all nonkeyword variable arguments.

Function definition is here

defprintinfo(arg1,*vartuple):

"This prints a variable passed arguments"

print"Output : "

print arg1

forvarinvartuple:

printvar

return;

Now you can call printinfo function

printinfo(5)

printinfo(12, 50, 20)

Output

Output:

10

Output:

70

60

50

Python Anonymous/Lambda Function

In Python, anonymous function is a function that is defined without a name.

While normal functions are defined using the def keyword, in Python anonymous functions are

defined using the lambda keyword.

Hence, anonymous functions are also called lambda functions.

Syntax of Lambda Function in python

lambda arguments: expression

Lambda functions can have any number of arguments but only one expression. The expression is

evaluated and returned. Lambda functions can be used wherever function objects are required.

Here is an example of lambda function that doubles the input value.

Eg1:

Program to show the use of lambda functions
double = lambda x: x * 2

Output: 10

print(double(5))

Eg2:

Program to show the use of lambda functions

sum = lambda x,y,z: x+y+z

Output: 30
print(sum(5,10,15))

Filter Function

In Python, we generally use it as an argument to a higher-order function (a function that takes in

other functions as arguments). Lambda functions are used along with built-in functions

like filter(), map() etc.

list1 = [1, 5, 4, 6, 8, 11, 3, 12]

list2 = list(filter(lambda x: (x%2 == 0) , list1))

Output: [4, 6, 8, 12]

print(list2)

https://www.programiz.com/python-programming/function-argument

Map Function

The map() function in Python takes in a function and a list.

The function is called with all the items in the list and a new list is returned which contains items

returned by that function for each item.

Here is an example use of map() function to double all the items in a list.

my_list = [1, 5, 4, 6, 8, 11, 3, 12]

new_list = list(map(lambda x: x * 2 , my_list))

Output: [2, 10, 8, 12, 16, 22, 6, 24]

print(new_list)

Use of lambda() with reduce()

The reduce() function in Python takes in a function and a list as argument. The function is called

with a lambda function and a list and a new reduced result is returned. This performs a repetitive

operation over the pairs of the list.

fromfunctools import reduce

list1 = [1, 5, 4, 6, 8, 11, 3, 12]

list2=reduce(lambda x,y:x+y,list1)

print(list2)

UNIT – II DATA STRUCTURES AND PACKAGES

Strings –List – Tuples – Dictionaries–Sets – Exception Handling: Built-in Exceptions – User-defined

exception– Modules and Packages.

Strings

 The string can be defined as the sequence of characters represented in the quotation marks.

In python, we can use single, double, or triple quotes to define a string.

String handling in python is a straightforward task since there are various inbuilt functions and

operators provided.In the case of string handling, the operator + is used to concatenate two strings

as the operation "hello"+" python" returns "hello python". Strings in Python are immutable. You

can’t change a string in-place, but you can copy parts of strings to another string to get the same

effect.

The operator * is known as repetition operator as the operation "Python " *2 returns "Python

Python ".

A substring (a part of a string) froma string extracted by using a slice.A slice is defined by using

square brackets, a start offset, an end offset, and an optional step size. Some of these can be

omitted. The slice will include characters from offset start to one before end.

1. [:] extracts the entire sequence from start to end.

2. [start :] specifies from the start offset to the end.

3. [: end] specifies from the beginning to the end offset minus 1.

4. [start : end] indicates from the start offset to the end offset minus 1.

5. [start : end : step] extracts from the start offset to the end offset minus 1, skipping

characters by step.

Example

str1 = 'Good Morning' #string str1

str2 = ' how are you' #string str2

print (str1[0:2]) #printing first two character using slice operator

print (str1[3]) #printing 3rd character of the string

print (str1*2) #printing the string twice

print (str1 + str2) #printing the concatenation of str1 and str2

output

Go

d

Good MorningGood Morning

Good Morning how are you

Strings Built-in Functions

name="Welcome Good How Morning How Are You"

name1=" hai "

print(name1.lstrip(' '))

print(name1.rstrip(' '))

print(name1.strip(' '))

print(max(name1))

print(name[4:-5])

print(name.count("how",0,len(name)))

print(name.endswith("you",0,len(name)))

print(name.find("how",0,len(name)))

print(name.isalnum())

print(name.islower())

print(name.upper())

print(name.istitle())

s="-"

l=["a","b","c"]

print(s.join(l))

print(max(name))

print(name.swapcase())

print(name.title())

print(name.replace("Good","bad"))

print(name.split(" "))

output

hai

hai

hai

i

ome Good How Morning How Ar

0

False

-1

False

False

WELCOME GOOD HOW MORNING HOW ARE YOU

True

a-b-c

w

wELCOMEgOODhOWmORNINGhOWaREyOU

Welcome Good How Morning How Are You

Welcome bad How Morning How Are You

['Welcome', 'Good', 'How', 'Morning', 'How', 'Are', 'You']

Lists

Lists are positionally ordered collections of arbitrarily typed objects, and they have no fixed size.

They are also mutable—unlike strings, lists can be modified in place by assignment to offsets as

well as a variety of list method calls.A list is created by placing all the items (elements) inside a

square bracket [], separated by commas. The same value can occur more than once in a list.

Empty list is created with list = []

>>>a_list = ['a', 'b', 'mpilgrim', 'z', 'example']

>>>a_list

['a', 'b', 'mpilgrim', 'z', 'example']

>>>a_list[0]

 'a'

>>>a_list[4]

 'example'

>>>a_list[-1]

'example'

>>>a_list[-3]

'mpilgrim'

The above code works in the following manner

1. First, define a list of five items. Note that they retain their original order.

2. A list can be used like a zero-based array. The first item of any non-empty list is always a_list[0].

3. The last item of this five-item list is a_list[4], because lists are always zero-based.

4. A negative index accesses items from the end of the list counting backwards. The last item of

any non-empty list is always a_list[-1].

5. If the negative index is confusing to you, think of it this way: a_list[-n] == a_list[len(a_list) -

n]. So in this list, a_list[-3] == a_list[5 - 3] == a_list[2].

Slicing a List

A range of items in a list can be accesses by using the slicing operator (:). Part of a list, called a

“slice”is obtained by specifying two indices. The return value is a new list containing all the items

of the list, in order, starting with the first slice index (in this case a_list[1]), up to but not including

the second slice index (in this case a_list[3]).

>>>a_list

['a', 'b', 'mpilgrim', 'z', 'example']

>>>a_list[1:3]

['b', 'mpilgrim']

>>>a_list[1:-1]

['b', 'mpilgrim', 'z']

>>>a_list[0:3]

['a', 'b', 'mpilgrim']

>>>a_list[:3]

['a', 'b', 'mpilgrim']

>>>a_list[3:]

['z', 'example']

>>>a_list[:]

['a', 'b', 'mpilgrim', 'z', 'example']

Adding Items to a List

There are four ways to add items to a list.

1. The + operator concatenates lists to create a new list. A list can contain any number of items;

there is no size limit (other than available memory).

2. The append() method adds a single item to the end of the list.

4. Lists are implemented as classes. “Creating” a list is really instantiating a class. As such, a list

has methods that operate on it. The extend() method takes one argument, a list, and appends each

of the items of the argument to the original list.

5. The insert() method inserts a single item into a list. The first argument is the index of the first

item in the list that will get bumped out of position. List items do not need to be unique; for

example, there are now two separate items with the value 'Ω': the first item, a_list[0], and the last

item, a_list[6].

>>>a_list = ['a']

>>>a_list = a_list + [2.0, 3]

>>>a_list

['a', 2.0, 3]

>>>a_list.append(True)

>>>a_list

['a', 2.0, 3, True]

>>>a_list.extend(['four', 'Ω'])

>>>a_list

['a', 2.0, 3, True, 'four', 'Ω']

a_list.insert(0, 'Ω')

>>>a_list

['Ω', 'a', 2.0, 3, True, 'four', 'Ω']

Append: Adds its argument as a single element to the end of a list. The length of the list increases

by one.

Extend(): Iterates over its argument and adding each element to the list and extending the list. The

length of the list increases by number of elements in it’s argument

Removing Items from a List

Lists can expand and contract automatically. There are several different ways to remove items

from a list. The elements of a list is removed by using del function. Elements can also removed

from the List by using built-in remove() function but an Error arises if element doesn’t exist in the

set. Remove() method only removes one element at a time, to remove range of elements, iterator

https://www.geeksforgeeks.org/python-list-remove/
https://www.geeksforgeeks.org/python-list-remove/

is used. Pop() function can also be used to remove and return an element from the set, but by

default it removes only the last element of the set, to remove element from a specific position of

the List, index of the element is passed as an argument to the pop() method.

Method 1 : Using del statement

>>>a_list = ['a', 'b', 'new', 'mpilgrim', 'new']

>>>a_list[1]

'b'

>>>dela_list[1]

>>>a_list

['a', 'new', 'mpilgrim', 'new']

>>>a_list[1]

'new'

Method 2 : Using remove() function

>>>a_list.remove('new')

>>>a_list

['a', 'mpilgrim', 'new']

>>>a_list.remove('new')

>>>a_list

['a', 'mpilgrim']

Method 2 : Using pop() function

When called without arguments, the pop() list method removes the last item in the list and returns

the value it remove.

>>>a_list = ['a', 'b', 'new', 'mpilgrim']

>>> a_list.pop()

'mpilgrim'

>>>a_list

['a', 'b', 'new']

a_list.pop(1) ② 'b'

>>>a_list

['a', 'new']

>>> a_list.pop()

'new'

>>> a_list.pop()

'a'

Python List Built-in Methods

https://www.geeksforgeeks.org/python-list-pop/

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

Pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Python List Built-in functions

Python provides the following built-in functions which can be used with the lists.

Tuples

Function Description

cmp(list1, list2) It compares the elements of both the lists.

len(list) It is used to calculate the length of the list.

max(list) It returns the maximum element of the list.

min(list) It returns the minimum element of the list.

list(seq) It converts any sequence to the list.

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp

A tuple is an immutable list. A tuple can not be changed in any way once it is created. The

differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use

parentheses, whereas lists use square brackets. Creating a tuple is as simple as putting different

comma-separated values.

Lists have methods like append(), extend(), insert(), remove(), and pop(). Tuples have none of

these methods. Tuples are faster than lists. The operators like concatenation (+), repetition (*),

Membership (in) works in the same way as they work with the list. We can store list inside tuple

or tuple inside the list up to any number of level.Tuples use less space. Tuples can be used as a

dictionary keys.Empty list is created with list = ().

Creating a tuple with one element is a bit tricky.Having one element within parentheses is not

enough. We will need a trailing comma to indicate that it is, in fact, a tuple.

Creating a tuple having one element

my_tuple = ("hello",)

print(type(my_tuple)) # <class 'tuple'>

>>>a_tuple = ("a", "b", "mpilgrim", "z", "example")

>>>a_tuple

('a', 'b', 'mpilgrim', 'z', 'example')

Access Tuple Elements

There are various ways in which we can access the elements of a tuple.

1. Indexing

We can use the index operator [] to access an item in a tuple where the index starts from 0.So, a

tuple having 6 elements will have indices from 0 to 5. Trying to access an element outside of tuple

(for example, 6, 7,...) will raise an IndexError.The index must be an integer; so we cannot use float

or other types. This will result in TypeError.

my_tuple = ('p','e','r','m','i','t')

print(my_tuple[0]) # 'p'

print(my_tuple[5]) # 't'

2. Negative Indexing

Python allows negative indexing for its sequences.The index of -1 refers to the last item, -2 to the

second last item and so on.

my_tuple = ('p','e','r','m','i','t')

Output: 't'

print(my_tuple[-1])

Output: 'p'

print(my_tuple[-6])

Deleting a Tuple

As discussed above, we cannot change the elements in a tuple. That also means we cannot delete

or remove items from a tuple.

But deleting a tuple entirely is possible using the keyword del.

my_tuple = ('p','r','o','g','r','a','m','i','z')

can't delete items

TypeError: 'tuple' object doesn't support item deletion

delmy_tuple[3]

Can delete an entire tuple

delmy_tuple

NameError: name 'my_tuple' is not defined

print(my_tuple)

Other Tuple Operations

1. Tuple Membership Test

We can test if an item exists in a tuple or not, using the keyword in.

my_tuple = ('a','p','p','l','e',)

In operation

Output: True

print('a' in my_tuple)

Output: False

print('b' in my_tuple)

Not in operation

Output: True

print('g' not in my_tuple)

2. Iterating Through a Tuple

Using a for loop we can iterate through each item in a tuple.

https://www.programiz.com/python-programming/keyword-list#del

Output:

Hello John

Hello Kate

for name in ('John','Kate'):

print("Hello",name)

The following are true about tuples

1. You can’t add elements to a tuple. Tuples have no append() or extend() method.

2. You can’t remove elements from a tuple. Tuples have no remove() or pop() method. To

explicitly remove an entire tuple, del statement is used.

3. You can find elements in a tuple, since this doesn’t change the tuple.

4. You can also use the in operator to check if an element exists in the tuple.

Comparison between lists and tuples

List Tuple

The literal syntax of list is shown by the

[].

The literal syntax of the tuple is shown by the ().

The List is mutable. The tuple is immutable.

The List has the variable length. The tuple has the fixed length.

The list provides more functionality than

tuple.

The tuple provides less functionality than the

list.

The list Is used in the scenario in which

we need to store the simple collections

with no constraints where the value of the

items can be changed.

The tuple is used in the cases where we need to

store the read-only collections i.e., the value of

the items can not be changed. It can be used as

the key inside the dictionary.

Sets

 set is a collection which is unordered and unindexed. In Python sets are written with

curly brackets. The elements of the set can not be duplicate. Unlike other collections in python,

there is no index attached to the elements of the set, i.e., we cannot directly access any element of

the set by the index. However, we can print them all together or we can get the list of elements by

looping through the set.

 The major advantage of using a set, as opposed to a list, is that it has a highly optimized

method for checking whether a specific element is contained in the set.

A set is created by placing all the items (elements) inside curly braces {}, separated by comma or

by using the built-in function set().It can have any number of items and they may be of different

types (integer, float, tuple, string etc.).But a set cannot have a mutable element, like list, set

or dictionary, as its element.Sets can be used to filter duplicates out of other collections

set of integers

my_set = {1, 2, 3}

print(my_set)

set of mixed datatypes

my_set = {1.0, "Hello", (1, 2, 3)}

print(my_set)

Creating Set

Creating an empty set is a bit tricky. Empty curly braces {} will make an empty dictionary in

Python. To make a set without any elements we use the set() function without any argument.

initialize a with {}

a = {}

check data type of a

Output: <class 'dict'>

print(type(a))

initialize a with set()

a = set()

check data type of a

Output: <class 'set'>

print(type(a))

Access Items

You cannot access items in a set by referring to an index, since sets are unordered the items has no

index.

But you can loop through the set items using a for loop, or ask if a specified value is present in a

set, by using the in keyword.

Example:

thisset={"apple", "banana", "cherry"}

for x in thisset:

 print(x)

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/dictionary

Adding or modifying the items to the set

Once a set is created, you cannot change its items, but you can add new items.Single element can

be added using the add() method and multiple elements can be added using the update() method.

The update() method can take tuples, lists, strings or other sets as its argument. In all cases,

duplicates are avoided.

Example for add()

thisset={"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

Example for update()

thisset={"apple", "banana", "cherry"}

thisset.update(["orange", "mango", "grapes"])

print(thisset)

Removing Items

A particular item can be removed from set using methods, discard() and remove().The only

difference between the two is that, while using discard() if the item does not exist in the set, it

remains unchanged. But remove() will raise an error in such condition. Similarly, an item can be

removed and returned using the pop() method. All items from a set is removed

using clear().The del keyword will delete the set completely.

Example

initialize my_set

my_set = {1, 3, 4, 5, 6}

print(my_set)

discard an element

Output: {1, 3, 5, 6}

my_set.discard(4)

print(my_set)

remove an element

Output: {1, 3, 5}

my_set.remove(6)

print(my_set)

https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

discard an element

not present in my_set

Output: {1, 3, 5}

my_set.discard(2)

print(my_set)

Set Operations

Sets can be used to carry out mathematical set operations like union, intersection, difference and

symmetric difference. This can be do with operators or methods.Union is performed

using | operator or the method union().Union of A and B is a set of all elements from both

sets.Intersection is performed using & operator or the method intersection().Intersection

of A and B is a set of elements that are common in both sets.Difference is performed

using - operator or method difference(). Difference of A and B (A - B) is a set of elements that are

only in A but not in B. Similarly, B - A is a set of element in B but not in A.Symmetric difference

is performed using ^ operator or method symmetric_difference().Symmetric Difference

of A and B is a set of elements in both A and B except those that are common in both.

Example:

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

print(A|B)

print(A&B)

print(A-B)

print(A^B)

Output

{1, 2, 3, 4, 5, 6, 7, 8}

{4, 5}

{1, 2, 3}

{1, 2, 3, 6, 7, 8}

Python Frozenset

Frozenset is a new class that has the characteristics of a set, but its elements cannot be changed

once assigned. While tuples are immutable lists, frozensets are immutable sets.

Dictionaries

Dictionary in Python is an unordered collection of data values, used to store data values like a map,

which unlike other Data Types that hold only single value as an element, Dictionary

holds key:value pair. Key value is provided in the dictionary to make it more optimized. Each key-

value pair in a Dictionary is separated by a colon :, whereas each key is separated by a ‘comma’.

A Dictionary in Python works similar to the Dictionary in a real world. Keys of a Dictionary must

be unique and of immutable data type such as Strings, Integers and tuples, but the key-values can

be repeated and be of any type.

Creating a Dictionary

In Python, a Dictionary can be created by placing sequence of elements within curly {} braces,

separated by ‘comma’. Dictionary holds a pair of values, one being the Key and the other

corresponding pair element being its Key:value. Values in a dictionary can be of any datatype and

can be duplicated, whereas keys can’t be repeated and must be immutable.

Dictionary can also be created by the built-in function dict(). An empty dictionary can be created

by just placing to curly braces{}.

Creating an empty Dictionary
Dict={}
print("Empty Dictionary: ")
print(Dict)

Creating a Dictionary
with Integer Keys
Dict={1: 'Arun', 2: 'Deepa', 3: 'Kalai'}
print("\nDictionary with the use of Integer Keys: ")
print(Dict)

Creating a Dictionary
with Mixed keys
Dict={'Name': 'Arun', 1: [1, 2, 3, 4]}
print("\nDictionary with the use of Mixed Keys: ")
print(Dict)

Creating a Dictionary
withdict() method
Dict=dict({1: 'Arun', 2: 'Kalai', 3:'Deepa'})
print("\nDictionary with the use of dict(): ")
print(Dict)

Creating a Dictionary
with each item as a Pair
Dict=dict([(1, 'Arun'), (2, 'Deepa')])
print("\nDictionary with each item as a pair: ")
print(Dict)

Accessing elements from a Dictionary

In order to access the items of a dictionary refer to its key name. Key can be used inside square

brackets.There is also a method called get() that will also help in accessing the element from a

dictionary.

Dict = {1: 'arun', 'name': 'kalai', 3: 'kumar'}

accessing a element using key
print("Acessing a element using key:")
print(Dict['name'])

accessing a element using key
print("Acessing a element using key:")
print(Dict[1])

accessing a element using get()
method
print("Acessing a element using get:")
print(Dict.get(3))

Removing Elements from Dictionary

In Python Dictionary, deletion of keys can be done by using the del keyword. Using del keyword,

specific values from a dictionary as well as whole dictionary can be deleted. Other functions

like pop() and popitem() can also be used for deleting specific values and arbitrary values from a

Dictionary. All the items from a dictionary can be deleted at once by using clear() method.

squares = {1:1, 2:4, 3:9, 4:16, 5:25}

remove a particular item

Output: 16

print(squares.pop(4))

Output: {1: 1, 2: 4, 3: 9, 5: 25}

print(squares)

remove an arbitrary item

Output: (1, 1)

print(squares.popitem())

Output: {2: 4, 3: 9, 5: 25}

print(squares)

delete a particular item

del squares[5]

Output: {2: 4, 3: 9}

print(squares)

remove all items

squares.clear()

Output: {}

print(squares)

delete the dictionary itself

del squares

Throws Error

print(squares)

Dictionary Methods

METHODS DESCRIPTION

copy() They copy() method returns a shallow copy of the dictionary.

clear() The clear() method removes all items from the dictionary.

pop()

Removes and returns an element from a dictionary having the

given key.

popitem()

Removes the arbitrary key-value pair from the dictionary and

returns it as tuple.

get() It is a conventional method to access a value for a key.

dictionary_name.values() returns a list of all the values available in a given dictionary.

str() Produces a printable string representation of a dictionary.

update() Adds dictionary dict2’s key-values pairs to dict

setdefault() Set dict[key]=default if key is not already in dict

keys() Returns list of dictionary dict’s keys

items() Returns a list of dict’s (key, value) tuple pairs

has_key() Returns true if key in dictionary dict, false otherwise

fromkeys()

Create a new dictionary with keys from seq and values set to

value.

type() Returns the type of the passed variable.

cmp() Compares elements of both dict.

Python Exceptions
An exception can be defined as an abnormal condition in a program resulting in the disruption in

the flow of the program.

Whenever an exception occurs, the program halts the execution, and thus the further code is not

executed. Therefore, an exception is the error which python script is unable to tackle with.

Python provides us with the way to handle the Exception so that the other part of the code can be

executed without any disruption. However, if we do not handle the exception, the interpreter

doesn't execute all the code that exists after the that.

Errors can also occur at runtime and these are called exceptions. They occur, for example, when a

file we try to open does not exist (FileNotFoundError), dividing a number by zero

(ZeroDivisionError), module we try to import is not found (ImportError) etc.

https://www.geeksforgeeks.org/python-dictionary-copy/
https://www.geeksforgeeks.org/python-dictionary-clear/
https://www.geeksforgeeks.org/python-dictionary-pop-method/
https://www.geeksforgeeks.org/python-dictionary-popitem-method/
https://www.geeksforgeeks.org/get-method-dictionaries-python/
https://www.geeksforgeeks.org/python-dictionary-values/
https://www.geeksforgeeks.org/python-dictionary-update-method/
https://www.geeksforgeeks.org/python-dictionary-setdefault-method/
https://www.geeksforgeeks.org/python-dictionary-keys-method/
https://www.geeksforgeeks.org/python-dictionary-items-method/
https://www.geeksforgeeks.org/python-dictionary-has_key/
https://www.geeksforgeeks.org/python-dictionary-fromkeys-method/
https://www.geeksforgeeks.org/python-type-function/
https://www.geeksforgeeks.org/dictionary-methods-in-python-set-1-cmp-len-items/

Whenever these type of runtime error occur, Python creates an exception object. If not handled

properly, it prints a traceback to that error along with some details about why that error occurred.

Illegal operations can raise exceptions. There are plenty of built-in exceptions in Python that are

raised when corresponding errors occur.

Python Built-in Exceptions

Exception Cause of Error

AssertionError Raised when assert statement fails.

AttributeError Raised when attribute assignment or reference fails.

EOFError Raised when the input() functions hits end-of-file condition.

FloatingPointError Raised when a floating point operation fails.

GeneratorExit Raise when a generator's close() method is called.

ImportError Raised when the imported module is not found.

IndexError Raised when index of a sequence is out of range.

KeyError Raised when a key is not found in a dictionary.

KeyboardInterrupt Raised when the user hits interrupt key (Ctrl+c or delete).

MemoryError Raised when an operation runs out of memory.

NameError Raised when a variable is not found in local or global scope.

NotImplementedError Raised by abstract methods.

OSError Raised when system operation causes system related error.

OverflowError

Raised when result of an arithmetic operation is too large to be

represented.

ReferenceError

Raised when a weak reference proxy is used to access a garbage

collected referent.

RuntimeError Raised when an error does not fall under any other category.

StopIteration

Raised by next() function to indicate that there is no further item to

be returned by iterator.

SyntaxError Raised by parser when syntax error is encountered.

IndentationError Raised when there is incorrect indentation.

TabError Raised when indentation consists of inconsistent tabs and spaces.

SystemError Raised when interpreter detects internal error.

SystemExit Raised by sys.exit() function.

TypeError

Raised when a function or operation is applied to an object of

incorrect type.

UnboundLocalError

Raised when a reference is made to a local variable in a function or

method, but no value has been bound to that variable.

UnicodeError Raised when a Unicode-related encoding or decoding error occurs.

UnicodeEncodeError Raised when a Unicode-related error occurs during encoding.

UnicodeDecodeError Raised when a Unicode-related error occurs during decoding.

UnicodeTranslateError Raised when a Unicode-related error occurs during translating.

ValueError

Raised when a function gets argument of correct type but improper

value.

ZeroDivisionError Raised when second operand of division or modulo operation is zero.

The try and except Block: Handling Exceptions

The try and except block in Python is used to catch and handle exceptions. Python executes code

following the try statement as a “normal” part of the program. The code that follows

the except statement is the program’s response to any exceptions in the preceding try clause.

In try block you can write the code which is suspicious to raise an exception, and in except block,

you can write the code which will handle this exception.

Syntax

try:

 #block of code

except Exception1:

 #block of code

except Exception2:

 #block of code

#other code

We can also use the else statement with the try-except statement in which, we can place the code

which will be executed in the scenario if no exception occurs in the try block.A try clause can have

any number of except clause to handle them differently, but only one will be executed in case an

exception occurs.

Syntax

try:

 #block of code

except Exception1:

 #block of code

else:

 #this code executes if no except block is executed

Declaring multiple exceptions

The python allows us to declare the multiple exceptions with the except clause. Declaring

multiple exceptions is useful in the cases where a try block throws multiple exceptions. This

can be achieved by writing names of exception classes in except clause seperated by comma.

Syntax

try:

 #block of code

except (<Exception 1>,<Exception 2>,<Exception 3>,...<Exception n>)

 #block of code

else:

 #block of code

try-finally clause

The try statement in Python can have an optional finally clause. In case if there is any code which

you want to be executed, whether exception occurs or not, then that code can be placed inside

the finally block. When an exception occurs, the control immediately goes to finally block and all

the lines in finally block gets executed first. After that the control goes to except block to handle

exception.

Syntax

try:

 #block of code

except (<Exception 1>,<Exception 2>,<Exception 3>,...<Exception n>)

 #block of code

else:

 #block of code

finally:

 # block of code

 # this will always be executed

Raising exceptions

An exception can be raised by using the raise clause in python. The syntax to use the raise

statement is given below.

syntax

raise Exception_class,<value>

Example

try:

 a = int(input("Enter a:"))

 b = int(input("Enter b:"))

 if b is 0:

 raise ArithmeticError;

 else:

 print("a/b = ",a/b)

except ArithmeticError:

 print("The value of b can't be 0")

Output:

Enter a: 10

Enter b: 0

The value of b can't be 0

User-Defined Exceptions

It is possible to define our own exception in Python. The built-in and user-defined exceptions in

Python using try, except and finally statements.

In Python, users can define such exceptions by creating a new class. This exception class has to be

derived, either directly or indirectly, from Exception class. Most of the built-in exceptions are also

derived from this class.

define Python user-defined exceptions

class Error(Exception):

 """Base class for other exceptions"""

pass

classValueTooSmallError(Error):

 """Raised when the input value is too small"""

pass

classValueTooLargeError(Error):

 """Raised when the input value is too large"""

pass

our main program

user guesses a number until he/she gets it right

you need to guess this number

number = 10

while True:

try:

i_num = int(input("Enter a number: "))

ifi_num< number:

raiseValueTooSmallError

elifi_num> number:

raiseValueTooLargeError

break

exceptValueTooSmallError:

print("This value is too small, try again!")

print()

exceptValueTooLargeError:

print("This value is too large, try again!")

print()

print("Congratulations! You guessed it correctly.")

Example

classCustomException(Exception):

pass

classValueNegativeError(CustomException):

pass

classValueTooLargeError(CustomException):

pass

try:

i_num = int(input("Enter a number: "))

ifi_num< 0:

raiseValueNegativeError

elifi_num> 100:

raiseValueTooLargeError

exceptValueNegativeError:

print("This value is negative enter positive number")

print()

exceptValueTooLargeError:

print("This value is too large, try again!")

print()

print("Congratulations! You guessed it correctly.")

Python Modules

A module is a file containing Python definitions and statements. A module can define functions,

classes and variables. A module can also include runnable code. Python modules are .py files that

consist of Python code. Any Python file can be referenced as a module.Grouping related code into

a module makes the code easier to understand and use.

A simple module - calc.py

def add(x, y):

 return (x+y)

def subtract(x, y):

 return (x-y)

The import statement
We can use any Python source file as a module by executing an import statement in some other

Python source file.

The import has the following syntax

 import module1[, module2[,... moduleN]

Python's from statement lets you import specific attributes from a module into the current

namespace. The from...import has the following syntax

 from modname import name1[, name2[, ... nameN]]

It is also possible to import all the names from a module into the current namespace by using the

following import statement −

 from modname import *

This provides an easy way to import all the items from a module into the current namespace.

When interpreter encounters an import statement, it imports the module if the module is present

in the search path. A search path is a list of directories that the interpreter searches for importing

a module. For example, to import the module calc.py, we need to put the following command at

the top of the script :

main.py

from cal import subtract

import calc

print calc.add(10, 2)

print subtract(78,45)

Built-in Modules

There are several built-in modules in Python, which you can import whenever you like.

Math module

Python Math module provides access to the mathematical functions. These include trigonometric

functions, representation functions, logarithmic functions, angle conversion functions, etc. So, we

can do many complex mathematical operations with the help of the Python Math functions

eg

import math

number = -2.34

print('The given number is :', number)

print('Floor value is :', math.floor(number))

print('Ceiling value is :', math.ceil(number))

print('Absolute value is :', math.fabs(number))

Random module

The random module gives access to various useful functions and one of them being able to generate

random numbers, which is randint().randint() is an inbuilt function of the random module in
Python
Syntax :
randint(start, end)

Python3 program explaining work

of randint() function

imports random module

import random

Generates a random number between

a given positive range

r1 = random.randint(0, 10)

print("Random number between 0 and 10 is % s" % (r1))

Generates a random number between

two given negative range

r2 = random.randint(-10, -1)

print("Random number between -10 and -1 is % d" % (r2))

Generates a random number between

a positive and a negative range

r3 = random.randint(-5, 5)

print("Random number between -5 and 5 is % d" % (r3))

Packages in Python

 Packages are namespaces which contain multiple packages and modules themselves. A

package is a collection of Python modules, i.e., a package is a directory of Python modules

containing an additional __init__.py file. The __init__.py distinguishes a package from a directory

that just happens to contain a bunch of Python scripts. Packages can be nested to any depth,

provided that the corresponding directories contain their own __init__.py file.

When you import a module or a package, the corresponding object created by Python is always of

type module. This means that the distinction between module and package is just at the file system

level. Note, however, when you import a package, only variables/functions/classes in the

__init__.py file of that package are directly visible, not sub-packages or modules.

Packages allow for a hierarchical structuring of the module namespace using dot notation. In the

same way that modules help avoid collisions between global variable names, packages help avoid

collisions between module names. Packages can contain nested subpackages to arbitrary depth.

__init__.py

The package folder contains a special file called __init__.py, which stores the package's content.

It serves two purposes:

1. The Python interpreter recognizes a folder as the package if it contains __init__.py file.

2. __init__.py exposes specified resources from its modules to be imported.

An empty __init__.py file makes all functions from above modules available when this package is

imported. Note that __init__.py is essential for the folder to be recognized by Python as a package.

The __init__.py file is normally kept empty. However, it can also be used to choose specific

functions from modules in the package folder and make them available for import.

Steps to Create a Python Package

1. Create a directory and give it your package's name.

2. Put your functions in it.

3. Create a __init__.py file in the directory

importing packages

from <package_name> import *

from<package_name>import<modules_name>[,<module_name>...]

from<package_name>import<module_name>as<alt_name>

Class

class Student:

noofstudents = 0

 name=""

age=0

def __init__(self, name, age):

 self.name = name

self.age = age

Student.noofstudents += 1

defdisplaydetails(self):

print("Name : ", self.name, ", Age: ", self.age)

s1 = Student("Jothi", 37)

s2 = Student("Senthil", 35)

s3= Student("Kalai",39)

s1.displaydetails()

s2.displaydetails()

s3.displaydetails()

print("Total Number of Students %d" % Student.noofstudents)

	Object-Oriented and Functional
	Free and Open Source
	Portable
	Interpreted
	Python is an interpreted language i.e. interpreter executes the code line by line at a time. When you use an interpreted language like Python, there is no separate compilation and execution steps. You just run the program from the source code. This ma...
	Extensible
	If needed, Python code can be written in other languages like C++. This makes Python an extensible language, meaning that it can be extended to other languages. Python extensions can be written in C and C++ for the standard implementation of python in...
	Powerful
	>>>a=123
	>>>type(a)
	>>>b=23.12
	>>>type(b)
	>>>c=-56
	>>>type(c)
	Taking multiple inputs from user in Python
	Membership operators
	Identity operators

	Loops in python
	Defining a Function
	Syntax of Function
	Example of a function

	Python List Built-in functions
	Access Tuple Elements
	1. Indexing
	2. Negative Indexing

	Deleting a Tuple
	my_tuple = ('p','r','o','g','r','a','m','i','z')
	# can't delete items
	# TypeError: 'tuple' object doesn't support item deletion
	# delmy_tuple[3]
	# Can delete an entire tuple
	delmy_tuple
	# NameError: name 'my_tuple' is not defined
	print(my_tuple)
	Other Tuple Operations
	1. Tuple Membership Test
	2. Iterating Through a Tuple

	Comparison between lists and tuples
	Python Frozenset
	Creating a Dictionary
	Accessing elements from a Dictionary
	Dictionary Methods

	try-finally clause
	Syntax

	Raising exceptions
	syntax
	Example

	__init__.py
	Steps to Create a Python Package

